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Progress in Last 9 Months  

This study seeks to provide water managers with up-to-date information on the viability of seasonal or 
annual hydrologic forecasts, and outline a means by which these forecasts can be used operationally.  All 
hydrologic data, results, and conclusions pertain specifically to water supply management in the Lower 
Colorado River basin in Texas, but the analysis methods are fully transferable to other locations and water 
management problems.  In Year 1 of the project, Steps 1-3 were to be completed as follows:  

1) Analysis of potential climate predictors for the case study region in central Texas 
2) Derivation of maximal skill forecasts based on identified predictor variables 
3) Generation of stream flow ensembles consistent with the skill and uncertainty of the forecasts. 
 

Analysis of Climate Predictors 

Several potential climate predictors have been analyzed, including stream flow persistence, soil moisture, 
Southern Oscillation Index (Jones, 2001), North Atlantic Oscillation (Hurrell, 2002), and Pacific Decadal 
Oscillation (Mantua, 2001).  Only weak correlations (0.2-0.3) between these predictors and stream flow 
have been found with the lead times needed for interannual water supply planning.  These results were at 
first surprising until two previous studies identifying teleconnections for central Texas were reexamined.  
First, Piechota and Dracup (1996) found strong correlation between the Southern Oscillation Index (SOI) 
and the Palmer Drought Severity Index (PDSI).  However, they did not find a strong relationship between 
SOI and stream flow, possibly because PDSI is a mathematical function of temperature and precipitation 
and provides a general indication of drought, whereas stream flow tends to integrate climatic processes 
over interseasonal time scales, and this seasonal averaging may limit forecast accuracy.  Second, 
Rajagopalan et al. (2000) found correlation between summer PDSI and winter Pacific Ocean sea surface 
temperature anomalies (Niño-3 index).  However, they also found epochal variations in this correlation, 
with the period of 1963-1995 showing weaker teleconnections than the period 1895-1962.  Of course, 
without a means of predicting these epochal shifts in teleconnections, such variation tends to confound 
statistical forecasting methods based on the entire historical record.   
 
Correlations between various periods of SOI, NAO, and basin-aggregated stream flow, along with stream 
flow autocorrelation coefficients, are shown in Table 1.  (Concurrent correlations between average annual 
stream flow and SOI and NAO were found to be –0.28 and –0.24, both significant at the .10 level.)  
Highlighted values indicate observations that could provide annual stream flow forecasts for water 
contract decisions made by the LCRA each November.  For instance, January-March SOI values appear 
the best choice to predict stream flow in the following year.   
 

Streamflow
SOI Jan-Dec(0) Jan-Dec(1) NAO Jan-Dec(0) Jan-Dec(1) Flow Jan-Dec(1)
Jan(0)-Dec(0) -0.2763 0.0603 Jan(0)-Dec(0) -0.2364 0.0117 Oct(0) 0.1625
Jan(0)-Mar(0) -0.2324 0.2477 Jan(0)-Mar(0) -0.0469 0.0007 Nov(0) 0.2372
Jan(0)-Apr(0) -0.2563 0.2401 Apr(0)-Jun(0) -0.2891 0.1046 Dec(0) 0.4429
Jan(0)-May(0) -0.2801 0.2130 Jul(0)-Sep(0) -0.0852 -0.2180
Jan(0)-Jun(0) -0.2932 0.2062 Oct(0)-Dec(0) -0.1074 0.1636
Jan(0)-Oct(0) -0.2779 0.1069 Jan(0)-Sep(0) -0.2290 -0.0912
Apr(0)-Jun(0) -0.2649 0.1004 Jun(0)-Dec(0) -0.2293 -0.0150
Apr(0)-Sep(0) -0.2285 0.0268 Jul(0)-Nov(0) -0.1503 -0.0472
Jun(0)-Nov(0) -0.2149 -0.0213 Jul(0)-Dec(0) -0.1431 -0.0419
Jul(0)-Dec(0) -0.2005 -0.0827 Aug(0)-Oct(0) -0.2027 -0.1264

Streamflow Streamflow

Table 1.  Indicator-streamflow correlation coefficients. 
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It is widely hypothesized that interdecadal North Pacific variability modulates ENSO-precipitation 
teleconnections (e.g., Gershunov and Barnett, 1998), but Rajagopalan et al. (2000) were not able to 
conclude that PDO has any effect on ENSO-precipitation teleconnections in central Texas.  Our analysis 
indicated that concurrent values of the PDO index and annual streamflow had a correlation of 0.34, 
significant at the .05 level, but there were no significant lagged correlations to indicate forecast value.  
Previous studies (e.g., Hamlet and Lettenmeier, 1999)  have found modest dry or wet trends to be in 
association with long periods of each PDO phase.  An apparent recent shift in the PDO to the cool phase 
could cause a general trend towards drier than normal conditions in the Southwest U.S., whereas this 
region has for the past 25 years been experiencing wetter than normal conditions.  Although the PDO 
index alone has only a very slight correlation with streamflow in Texas, the combined effect of PDO and 
ENSO may be much more significant.  Our analysis indicated that years of warm ENSO (El Niño) and 
PDO were followed by lower than average streamflow (72% of historical mean), whereas years in which 
the cool ENSO phase (La Niña) coincided with cool PDO were followed by significantly higher than 
average flow (133% of historical mean).  Such information is potentially helpful during the repetition of 
such coincidental events, but verification of predictive skill is limited due to their infrequent occurrence.  
During the 60 years of historical record, only five sets of warm phases coincided (1952, 1964, 1966, 
1969, 1995), and four sets of cool phases occurred (1939, 1984, 1985, 1986). 

Along with the various teleconnections, we have begun exploring the potential of soil moisture as a 
climate indicator and predictor of streamflow over the LCRA.  The VIC Retrospective Land Surface Data 
Set (Maurer et al., 2002) has been used to obtain estimates of fractional soil moisture over the LCRA 
region for the time period of 1950-1999.  A great deal of effort went into selectively extracting the 
NetCDF format data from the VIC Retrospective Land Surface Data Set over the LCRA and importing it 
into ArcView GIS. The first step of the analysis was to perform a streamflow-runoff comparison between 
the VIC Retrospective Land Surface Data Set runoff and observed streamflow in the LCRA region.  The 
modeled annual aggregate runoff and observed annual aggregate streamflow were found to track each 
other quite well with a correlation of 0.75.  This assurance that the VIC Retrospective Land Surface Data 
Set performs reasonably well in predicting trends in runoff compared to observations gave us confidence 
in using the VIC modeled soil moisture for correlation analysis with observed streamflow.  Visual 
comparison between trends in VIC modeled soil moisture and observed streamflow (see Figure 1) showed 
the potential of soil moisture as a climate indicator and predictor of streamflow.   

Figure 1: Climatology plot of annual average fractional soil moisture anomalies and annual aggregate 
observed streamflow anomalies.  Anomalies defined as deviations from temporal average. 
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Correlation between average fractional soil moisture and aggregate observed streamflow was computed 
for different combinations of annual and seasonal time periods and lag times.  The aggregation and 
averaging was performed over the LCRA region and for the specified time period.  Correlations between 
VIC modeled soil moisture and observed streamflow at a 0-season (for seasonal aggregates) or 0-year (for 
annual aggregates) lag were found to be in the range of 0.5~0.7.  Figure 2 shows the correlation between 
annual aggregate observed streamflow and various average fractional soil moisture at 0-year lag. 
Although not shown below, the correlations decreased rapidly as the lead-time between the soil moisture 
and streamflow increased.  At the 1-season and 1-year lag, the correlations decreased below significance.  
The demonstrated need for coincident year (0-lag) soil moisture and streamflow to get significant 
correlations highlights the importance of soil moisture forecasts. For example, a reliable prediction of 
seasonal or annual average soil moisture for next year has potential as a climate indicator and predictor of 
next year’s annual aggregate streamflow.    

Figure 2: Correlation between annual aggregate observed streamflow and various average 
fractional soil moisture for coincident (0-lag) years. 

Derivation of Maximal Skill Forecasts 

Upon identification of potential climate predictors, the next step is to select a predictor or combination of 
predictors that provide the best forecasts (as measured by an appropriate skill score).  The procedure 
followed in this study was similar to that of Piechota and Dracup (1999): Use discriminant analysis 
coupled with Bayesian updating to derive probabilistic categorical forecasts, with forecast skill measured 
by the Ranked Probability Score (RPS).  An intermediate step in the discriminant analysis was to apply 
kernel density estimation to derive probability density functions for each flow category (High, Medium, 
Low) and each climate predictor (e.g., SOI, NAO).  Results for SOI and NAO are shown in Figure 3. 
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Figure 3. Conditional probability density functions for each flow regime. 

 
Kernel density estimation indicated some apparent shifts in probability of occurrence, but also yielded 
some inconclusive results.  For instance, as seen in Figure 3, high SOI values (greater than 1.0) appear 
more likely to precede high flows than medium or low flows.  However, high SOI values also tend to 
precede low flows more frequently than medium flows, perhaps indicating that high SOI values 
correspond to highly variable conditions in the subsequent year.  Similarly inconclusive results were 
obtained for NAO and stream flow persistence.  However, as shown in Figure 3, high NAO values 
(greater than 2.0) appear much more likely to precede low flows than medium or high flow, indicating 
that NAO may serve as a predictor of drought.   
 
The next step is to apply Bayes Theorem to develop posterior probabilities of each flow category 
conditioned on the observed indicator values.  Cross validation can then be performed, and forecast skill 
can be evaluated using the Ranked Probability Score (RPS) and Ranked Probability Skill Score (RPSS).  
Results for three predictors are shown in Table 2, where RPSS indicates the relative improvement of 
using a forecast over climatology alone.  These results indicate that NAO is the only one of the three 
predictors with skill, providing a 7.9% improvement in RPS values over climatology.  However, while 
NAO appears to be a good predictor of low flows, it is a very poor predictor of average flow conditions.  
SOI is the best predictor of medium flows (as might be expected from the pdfs shown in Figure 3), but 
surprisingly has no skill as a predictor of low or high flow conditions.  Based on these results, stream flow 
persistence does not appear useful as a predictor of annual flow.  (However, stream flow persistence does 
appear useful as a predictor with lead times of 3-6 months, with 4-6% improvement in RPS values over 
climatology, which will be considered in future work.)   
 

 Table 2.  Ranked Probability Scores and Skill Scores for annual flow prediction. 

   RPS       RPSS   

  SOI NAO OCT   SOI NAO OCT 

L 0.295 0.216 0.313   -0.063 0.223 -0.126 

M 0.102 0.144 0.103   0.084 -0.293 0.069 

H 0.279 0.254 0.263   -0.004 0.084 0.052 

Ave 0.225 0.205 0.226   -0.014 0.079 -0.019 
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Some preliminary analysis has been done to determine if improved forecasts can be derived from 
combinations of indicators.  As described by O’Connell (2002), the weighting method of Piechota and 
Dracup (1999) led to inconclusive results.  Data mining approaches (e.g., Steinberg and Cardell, 1998) are 
now being explored and appear promising. 

Generation of Stream Flow Ensembles 
 
In the absence of a calibrated and verified hydrologic model for continuous simulation of the Lower 
Colorado River basin, either historic stream flow sequences or synthetic stream flow sequences from a 
multivariate ARMA model have been proposed for use in the development of probabilistic hydrology 
outlooks.  Details are given in O’Connell (2002).  The final step needed to incorporate climate forecasts 
in a scenario-based decision support model (Watkins et al., 2000) is to condition the streamflow sequence 
probabilities appropriately.  The method currently proposed involves a simple categorical shift, referred to 
as the Croley-Wilks method (Croley, 2000; Wilks, 2001).  This method simply adjusts the probability of 
flow in each regime by dividing the probability conditional to a predictor by the number of events in that 
regime.  Although straightforward, this approach has been criticized by Stedinger and Kim (2002) 
because it leads to discontinuities between categories in the probability distribution, which can result in a 
loss of resolution or information.  Stedinger and Kim recommend a distribution-oriented approach that 
assigns continuously shifted probabilities to each point rather than discrete categorical shifts.  Adapting 
such an approach for nonparametric density functions will be investigated in future phases of this work. 

Plan of Work in Next 3 Months  
 
Work planned for the remainder of Year 1 includes the development and application of data mining 
methods to derive composite climate forecasts (i.e., stream flow forecasts based on multiple predictors).  
Soil moisture extracted from the VIC Retrospective Land Surface Data Set will be included in the 
analysis as a potential predictor.  We will continue to use the Ranked Probability Skill Score to evaluate 
the potential benefits of these forecasts, and additional analysis will be done to estimate the statistical 
significance of these skill scores using bootstrap methods (Efron, 1982).   
 
Collaboration with the Lower Colorado River Authority and technology transfer will continue with a visit 
by the PI to the LCRA in late Summer or early Fall 2003.  Due to the untimely death of Dr. Quentin 
Martin, whose foresight and enthusiastic support made this work possible, Dr. Jobaid Kabir will be the 
contact person at the LCRA for Year 2 of the project.   Dr. Kabir has committed the LCRA to continued 
collaboration with the PIs, and he is directly supervising the implementation of the decision support 
system for which climate forecasts are being derived.  
 
In August 2003, the project will produce its first MS graduate.  Mohammed Mahmoud has been working 
under the direction of Dr. Nykanen exploring the potential of soil moisture as a climate indicator and 
predictor of streamflow over the LCRA using the VIC Retrospective Land Surface Data Set.  It is 
anticipated that Mohammed will defend his MS thesis work in early August.  The project has also 
supported the research of a PhD student, Wenge Wei, under the direction of Dr. Watkins.  Wenge has 
been making good progress on probabilistic forecast validation and, over the summer months, he will 
continue working on the generation and validation of forecasts based on multiple  predictors. 
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Plan of Work in Year 2 
 
Currently, there are no significant changes expected for the Year 2 work plan.  The remaining tasks will 
be completed as follows in order to estimate the potential economic benefits of forecasts: 

• Modification and application of an existing stochastic optimization model for reservoir operations 
(Watkins and Kabir) 

• Inference of forecast-based operating rules from the optimization results (Watkins and Kabir) 
• Simulation of rules derived with and without seasonal forecast information to evaluate the benefits of 

forecasts (Watkins, Nykanen, and Kabir). 
• Evaluate usefulness of NOAA CPC forecasts of soil moisture anomalies in predicting streamflow for 

the LCRA region (Nykanen). 
 
Results from Year 1 emphasize the fact that hydrologic forecasting for the water supply operations of the 
LCRA poses several serious challenges, including relatively short hydro-climatological records, the need 
for long lead times (9-12 months), the lack of a hydrologic predictor such as snowpack, and the need to 
consider both Atlantic and Pacific climate anomalies.  Although correlations between NAO, ENSO, and 
PDO and stream flow are weak, it is possible that stronger correlations exist with global sea surface 
temperatures, and additional analysis will be done to confirm this.  It is also expected that using a 
combination of predictors will provide modest improvements in forecast skill.  However, significant 
improvement may require closer analysis of the hydrologic processes that contribute to stream flow, 
which tends to integrate climatic processes over interseasonal time scales.  For instance, streamflow is a 
function of both surface runoff and groundwater discharge, and groundwater recharge and discharge 
processes often exhibit lag times markedly longer than those of rainfall-runoff processes.  Furthermore, 
groundwater basins seldom align directly with surface watersheds, which may confound statistical 
analyses of climate and streamflow variables measured at specific gage locations.  Spectral analysis 
techniques (e.g., Shun and Duffy, 1999) will be applied to address these concerns. 

Correlation analysis between soil moisture from the VIC Retrospective Land Surface Data Set and 
observed streamflow demonstrated the need for coincident year (0-lag) soil moisture and streamflow to 
obtain significant correlation.  Thus, if soil moisture is to be used as a climate indicator and predictor of 
annual aggregate streamflow, then reliable forecasts of seasonal to annual soil moisture are needed.  
Research during Year 2 will include incorporation of NOAA CPC forecasts of seasonal soil moisture 
anomalies in the LCRA Decision Support System.  It is expected that this exploratory research will 
provide guidance to the operational research community on the skill and lead time required for soil 
moisture forecasts to be useful in water resources management applications. 
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